skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 29, 2027
  2. Free, publicly-accessible full text available December 31, 2026
  3. This study identified the LARP6 La Module from Tetrabaena socialis (T. socialis), a four-celled green algae, in an effort to better understand the evolution of LARP6 structure and RNA-binding activity in multicellular eukaryotes. Using a combination of sequence alignments, domain boundary screens, and structural modelling, we recombinantly expressed and isolated the TsLARP6 La Module to > 98% purity for in vitro biochemical characterization. The La Module is stably folded and exerts minimal RNA binding activity against single-stranded homopolymeric RNAs. Surprisingly, it exhibits low micromolar binding affinity for the vertebrate LARP6 cognate ligand, a bulged-stem loop found in the 5'UTR of collagen type I mRNA, but does not bind double-stranded RNAs of similar size. These result suggests that the TsLARP6 La Module may prefer structured RNA ligands. In contrast, however, the TsLARP6 La Module does not exhibit the RNA chaperone activity that is observed in vertebrate homologs. Therefore, we conclude that protist LARP6 may have both distinct RNA ligands and binding mechanisms from the previously characterized LARP6 proteins of animals and vascular plants, thus establishing a distinct third class of the LARP6 protein family. 
    more » « less
    Free, publicly-accessible full text available December 31, 2026
  4. Free, publicly-accessible full text available December 1, 2026
  5. Free, publicly-accessible full text available December 1, 2026
  6. Abstract Kelp forests form some of the most productive areas on earth and are proposed to sequester carbon in the ocean, largely in the form of released dissolved organic carbon (DOC). Here we investigate the role of environmental, seasonal and age-related physiological gradients on the partitioning of net primary production (NPP) into DOC by the canopy forming giant kelp (Macrocystis pyrifera). Rates of DOC production were strongly influenced by an age-related decline in physiological condition (i.e. senescence). During the mature stage of giant kelp development, DOC production was a small and constant fraction of NPP regardless of tissue nitrogen content or light intensity. When giant kelp entered its senescent phase, DOC production increased substantially and was uncoupled from NPP and light intensity. Compositional analysis of giant kelp-derived DOC showed that elevated DOC production during senescence was due to the solubilization of biomass carbon, rather than by direct exudation. We coupled our incubation and physiological experiments to a novel satellite-derived 20-year time series of giant kelp canopy biomass and physiology. Annual DOC production by giant kelp varied due to differences in standing biomass between years, but on average, 74% of the annual DOC production by giant kelp was due to senescence. This study suggests DOC may be a more important fate of macroalgal NPP than previously recognized. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  7. Abstract This study reports a pulsed laser deposition-assisted synthesis of highly metallic titanium nitride (TiN) and a series of semiconducting titanium oxynitride (TiNxOy) compounds in thin film form with tunable plasmonic properties by carefully altering the nitrogen (N)-oxygen (O) ratio. The N/O ratio was controlled from 0.3 (highest oxygen doping of TiN) to ~ 1.0 (no oxygen doping of TiN) by growing the TiN films under nitrogen pressures of 50, 35, and 10 mTorr and high vacuum conditions of 2 × 10−6 Torr with no external gas introduced. The presence of nitrogen in the deposition chamber during the film growth affects the gas phase oxidation of TiN to TiNxOyby increasing the mean free path-dependent N and O inter-collisions per second by two to three orders of magnitudes. The evidence of increased oxidation of TiN to TiNxOywith an increase in nitrogen deposition pressure was obtained using X-ray photoelectron spectroscopy analysis. While the TiN samples deposited in high vacuum conditions had the highest reflectance, TiNxOythin films were also found to possess high reflectance at low frequency with a well-defined edge around 20,000 cm−1. Furthermore, the vacuum-deposited TiN samples showed a large negative dielectric constant of -330 and the largest frequency of zero-crossing at 25,000 cm−1; the TiNxOysamples deposited in the presence of nitrogen ambient also showed promising plasmonic applications at the near-mid infrared range. A comparison of the dielectric constant and loss function data of this research with the literature values for noble metals seems to indicate that TiN and TiNxOyhave the potential to replace gold and silver in the visible and near-infrared spectral regions. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  8. Free, publicly-accessible full text available December 1, 2026
  9. none (Ed.)
    Vegetation has recolonized the Arctic numerous times throughout the Holocene. The most recent retreat of glaciers on Baffin Island, Nunavut, has been since the Little Ice Age, due to anthropogenic warming. Retreating cold-based ice often uncovers ancient vegetation. Recently exposed plants can tell us about past plant communities and colonization rates, important information for parameterizing vegetation feedback in climate models. Here, we provide complete descriptions of vegetation communities recently exposed by two retreating ice caps on Baffin Island and compare them with modern vegetation in the surrounding areas. We found that the ancient vegetation was similar to current vegetation, meaning that the current vegetation had not significantly changed during the past several hundred years. Colonization of bare ground was evident and differed depending on the substrate (rock versus finer substrates), with saxicolous lichens colonizing rocks and acrocarpous mosses and liverworts colonizing areas with finer substrates. The mature communities differed at the two sites, mostly because of a warmer climate at the southern site. Vegetation colonization, especially of light-colored rocks, reduces albedo, but the process can take hundreds of years. Changes in plant community composition are likely to continue for thousands of years due to climate change and the arrival of new species. 
    more » « less
    Free, publicly-accessible full text available December 31, 2026
  10. Free, publicly-accessible full text available December 31, 2026